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1 Operators

In this lecture we will start studying the most important part of the course on linear algebra

— the theory of operators.

Let V be a vector space. Any linear function from V to V is called the linear operator.

We will denote operators by script letters (A,B,C), for example:

A : V → V.

It means that the operator “rearranges” somehow vectors from the given vector space V . An

example of the operator can be an operator of rotation by an angle α — applying it, each vector

will be rotated by an angle α counterclockwise. Another example — operator of the reflection

with respect to given line — each vector maps to its reflection with respect to some line.

We will learn how to describe operators, and then we will try to classify them, and under-

stand actions of them. But first we will study some more facts about vector spaces.

2 Coordinates

Let V be a vector space, and assume that {e1, e2, . . . , en} is a basis. Since it is a basis, we can

represent any other vector v as a linear combination of basic vectors, i.e. for any vector v we

can find such numbers a1, a2, . . . , an, that

v = a1e1 + a2e2 + · · ·+ anen.

Such numbers a1, a2, . . . , an are called coordinates of the vector v with respect to basis

{e1, e2, . . . , en}. Let’s consider some examples.

Example 2.1. Consider the space R3, and let vector v = (1, 1, 1). We will consider 2 different

bases, and find coordinates of v with respect to them
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• Let’s consider the standard basis

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Then the vector v can be represented as

v = (1, 1, 1) = 1(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1) = 1e1 + 1e2 + 1e3.

So, the coordinates of this vector with respect to the standard basis are (1, 1, 1).

• Let’s consider another basis

e′1 = (0, 0, 1), e′2 = (0, 1, 1), e′3 = (1, 1, 1)

(we can simply check that this is a basis). Then the vector v can be represented as

v = (1, 1, 1) = 0(0, 0, 1) + 0(0, 1, 1) + 1(1, 1, 1) = 0e1 + 0e2 + 1e3.

So, the coordinates of this vector with respect to the basis {e′1, e′2, e′3} are (0, 0, 1).

So, we see, that the coordinates of the same vector may be different with the respect to

different bases.

Now we will prove that if the basis is given, the coordinates are defined uniquely.

Theorem 2.2. Let V be a vector space, and let e1, e2, . . . , en be a basis. Then for any vector v

numbers a1, a2, . . . , an such that

v = a1e1 + a2e2 + · · ·+ anen

are defined uniquely, i.e. if

v = a1e1 + a2e2 + · · ·+ anen = b1e1 + b2e2 + · · ·+ bnen

then a1 = b1, a2 = b2, . . . , an = bn.

Proof. If

v = a1e1 + a2e2 + · · ·+ anen = b1e1 + b2e2 + · · ·+ bnen

then

0 = (a1e1 + a2e2 + · · ·+ anen)− (b1e1 + b2e2 + · · ·+ bnen)

= (a1 − b1)e1 + (a2 − b2)e2 + · · ·+ (an − bn)en.

But vectors e1, e2, . . . , en are linearly independent, thus coefficients of this linear combination

are equal to 0, i.e.

a1 = b1, a2 = b2, . . . , an = bn.
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3 Change of the basis

Let V be a vector space, and assume that there are 2 fixed bases in V :

{e1, e2, . . . , en} — “old” basis

{e′1, e′2, . . . , e′n} — “new” basis

Let’s consider any vector v. Then we can find its coordinates with respect to the “old” basis

and its coordinates with respect to the “new” basis. Our goal is to figure out how are they

related.

Let’s do the following construction. Since {e1, e2, . . . , en} is a basis, we can express all

vectors from the “new” basis as linear combinations of the vectors from the “old” basis.

e′1 = c11e1 + c21e2 + · · ·+ cn1en

e′2 = c12e1 + c22e2 + · · ·+ cn2en

. . .

e′2 = c1ne1 + c2ne2 + · · ·+ cnnen

Now we can write the coefficients of these expressions as columns of the matrix:

C =




c11 c12 . . . c1n

c21 c22 . . . c2n

. . . . . . . . . . . . . . . . .

cn1 cn2 . . . cnn




This matrix is called change-of-basis matrix from the “old” basis {e1, e2, . . . , en} to the

“new” basis {e′1, e′2, . . . , e′n}.
Straight from the definition of the change-of-basis matrix it follows, that

(e′1, e
′
2, . . . , e

′
n) = (e1, e2, . . . , en)




c11 c12 . . . c1n

c21 c22 . . . c2n

. . . . . . . . . . . . . . . . .

cn1 cn2 . . . cnn




i.e.

(e′1, e
′
2, . . . , e

′
n) = (e1, e2, . . . , en)C (1)

Example 3.1. Let’s consider R3. Assume that the “old” basis is

e1 = (1, 0, 1), e2 = (2,−1, 0), e3 = (0, 1, 3),

and the “new” basis is

e′1 = (3, 0, 4), e′2 = (4,−1, 2), e′3 = (−3, 2, 2),
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Let’s express vectors from the “new” basis as linear combinations of the vectors from the “old”

basis.

e01:

e′1 =




3

0

4


 = c11




1

0

1


 + c21




2

−1

0


 + c31




0

1

3




So, we have the following system:




c11 + 2c21 = 3

− c21 + c31 = 0

c11 + 3c31 = 4

Solving this system, we can obtain c11 = 1, c21 = 1, c31 = 1. So,

e′1 = e1 + e2 + e3.

e02:

e′2 =




4

−1

2


 = c12




1

0

1


 + c22




2

−1

0


 + c32




0

1

3




So, we have the following system:




c12 + 2c22 = 4

− c22 + c32 = −1

c12 + 3c32 = 2

Solving this system, we can obtain c12 = 2, c22 = 1, c32 = 0. So,

e′2 = 2e1 + e2.

e03:

e′3 =



−3

2

2


 = c13




1

0

1


 + c23




2

−1

0


 + c33




0

1

3




So, we have the following system:




c13 + 2c23 = −3

− c23 + c33 = 2

c13 + 3c33 = 2

Solving this system, we can obtain c13 = −1, c23 = −1, c33 = 1. So,

e′3 = −e1 − e2 + e3.
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Writing all these coordinates as a columns of a matrix, we will obtain the change-of-coordinates

matrix:

C =




1 2 −1

1 1 −1

1 0 1




from the “old” basis {e1, e2, e3} to the “new” basis {e′1, e′2, e′3}.

Now we will learn what do we need this matrix for.

Let x be a vector from the vector space V with 2 bases — “old” and “new”. Then we can

represent as a linear combination of vectors from the “old” basis and as a linear combination

of vectors from the “new” basis:

x = x1e1 + x2e2 + · · ·+ xnen = x′1e
′
1 + x′2e

′
2 + · · ·+ x′ne′n

In the matrix form we can write it as

x = (e1, e2, . . . , en)




x1

x2

...

xn




= (e′1, e
′
2, . . . , e

′
n)




x′1
x′2
...

x′n




Now, using formula (1) we can substitute (e′1, e
′
2, . . . , e

′
n) and get the following:

x = (e1, e2, . . . , en)




x1

x2

...

xn




= (e1, e2, . . . , en)C




x′1
x′2
...

x′n




So, now we see the following important result:




x1

x2

...

xn




= C




x′1
x′2
...

x′n




, or C−1




x1

x2

...

xn




=




x′1
x′2
...

x′n




(2)

So, given the coordinates of the vector with respect to the “new” basis and the change-of-basis

matrix we can get the coordinates of the vector with respect to the “old” basis, and the other

way round.

Example 3.2 (Continuation of the example 3.1). Let the bases are the same as in the

previous example, i.e. the “old” basis is

e1 = (1, 0, 1), e2 = (2,−1, 0), e3 = (0, 1, 3),
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and the “new” basis is

e′1 = (3, 0, 4), e′2 = (4,−1, 2), e′3 = (−3, 2, 2),

As we computed in the previous example, the change-of-basis matrix is

C =




1 2 −1

1 1 −1

1 0 1




Let x = (−2, 4, 10). Let’s try to find the coordinates of this vector with respect to the “old” and

to the “new” bases, and see that they are connected be relation (2).

For the coordinates with respect to the “old” basis, we should solve the following system:

x =



−2

4

10


 = x1




1

0

1


 + x2




2

−1

0


 + x3




0

1

3




Solving it, e.g using Gaussian elimination, we get

x1 = −2, x2 = 0, x3 = 4.

For the coordinates with respect to the “new” basis, we should solve the following system:

x =



−2

4

10


 = x′1




3

0

4


 + x′2




4

−1

2


 + x′3



−3

2

2




Solving it, e.g. using Gaussian elimination, we get

x′1 = 3, x′2 = −2, x′3 = 1.

Now we can check our main formula (2):

C




x′1
x′2
x′3


 =




1 2 −1

1 1 −1

1 0 1







3

−2

1


 =



−2

0

4


 =




x1

x2

x3




4 Matrix of the linear operator

Let V be a vector space, and let {e1, e2, . . . , en} be the basis of V . Let A be a linear operator

in the space V .

Let’s apply this linear operator to basic vectors, and let’s represent them as a linear com-

bination of vectors from the basis, i.e.

Represent A(e1) as a linear combination of e1, e2, . . . , en

Represent A(e2) as a linear combination of e1, e2, . . . , en

. . .

Represent A(en) as a linear combination of e1, e2, . . . , en
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Now, we will write the corresponding coordinates as columns of a matrix: coordinates of A(e1)

to the first column, coordinates of A(e2) to the second column, etc. This matrix will be called

the matrix of a linear operator.

Actually, it means that if the operator A has a matrix A then

(A(e1), A(e2), . . . , A(en)) = (e1, e2, . . . , en)A (3)

Example 4.1 (Matrix of rotation by an angle α). We will consider the operator of the

rotation of the plane by an angle α counterclockwise.

-x

6y

-
e1

6
e2

�
�
�
�>

A(e1)

S
S
S
So

A(e2)

α
α

From this picture we can see that the coordinates of the vector A(e1) are (cos α, sin α), and

coordinates of the vector A(e2) are (− sin α, cos α). So, the matrix of the operator of rotation

of the plane by an angle α is (
cos α − sin α

sin α cos α

)

As for linear functions, the following fact is true: if

y = A(x)

then

y = Ax.

Example 4.2. Let’s consider a vector (1, 1). Let’s find its coordinates after rotation by an

angle α counterclockwise. To do this we should multiply the matrix of rotation by the column

with coordinates of the vector. We get:

(
cos α − sin α

sin α cos α

)(
1

1

)
=

(
cos α− sin α

cos α + sin α

)
.

So, after rotation by an angle α counterclockwise the vector (1, 1) will become (cos α−sin α, cos α+

sin α).
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